Textile Fabrication
DefeXtiles

Textile Fabrication for Tangible Media Group, MIT Media Lab

DefeXtiles is a rapid and low-cost technique to produce realistic high-fidelity textiles on 3D printers. The work demonstrates that under-extrusion defects can be finely controlled to quickly print thin flexible textiles into complex 3D shapes. This approach enables a myriad of applications including printing full sized garments, deformable tangible interfaces, and ultra-tough shuttlecocks.

Jack Forman 2021 Academic Bronze Press Kit № 112633

Download Press Kit № 112633

Download Press Kit № 112633 Textile Fabrication for Tangible Media Group, MIT Media Lab by Jack Forman to access high-res images, essential texts, translations, and exclusive interviews—all in one.


Available Now for Your Next Story

At innovation|newsroom, we understand the pressures and deadlines journalists face. That’s why we offer exclusive access to our curated press kits and high-resolution images, tailored for accredited journalists. These resources are designed to enrich your stories with depth and visual appeal, spotlighting the world's most innovative designs.


Please Note:

  • Credit the work's creator and/or photographer.
  • Mention innovation|newsroom as your source.
  • Share your published pieces with us; we love to celebrate and promote your work on our platform and social media.

Let’s Collaborate: Your stories matter. innovation|newsroom is here to support you with quality, accessible content. Once you are accredited, reach out for the images and content you need. We will provide the specific images and content directly, along with recommendations on works to feature.


Get Accredited Easily: Quick access to our resources requires media accreditation. Apply for media accreditation to join our network and start exploring a wealth of design stories.


DefeXtiles by Jack Forman
DefeXtiles by Jack Forman

Download 1800 Pixels JPEG Image.

Utilize this 1800-pixel image at 300 DPI for sharp, detailed prints up to 6 inches. When your narrative requires larger images, deploying it at 150 DPI allows for clear, impactful visuals up to 12 inches. Accredited press members can download high-res images free of watermarks. Alternatively, low-res images are instantly available. Please check the Image Credits Section for photo acknowledgements.

Textile Fabrication by Jack Forman
Textile Fabrication by Jack Forman

Download 1800 Pixels JPEG Image.

This 1800-pixel image offers versatility for print: achieve crisp, detailed prints up to 6 inches at 300 DPI, or opt for larger, yet still sharp visuals up to 12 inches at 150 DPI. Accredited press members can download high-res images free of watermarks. Alternatively, low-res images are instantly available. For attribution details, see the Image Credits Section.

Jack Forman DefeXtiles
Jack Forman DefeXtiles

Download 1800 Pixels JPEG Image.

Harness the clarity of this 1800-pixel image for your prints—perfectly sharp at 6 inches with 300 DPI and equally clear at 12 inches when adjusted to 150 DPI. With press accreditation, enjoy watermark-free, high-res downloads. Low-res images are available immediately for all. Acknowledgements for photographs are in the Image Credits Section.

Jack Forman Textile Fabrication
Jack Forman Textile Fabrication

Download 1800 Pixels JPEG Image.

Leverage the high resolution of this 1800-pixel image for detailed, vibrant prints. At 300 DPI, it's ideal for up to 6 inches; at 150 DPI, it scales beautifully to 12 inches. Press accreditation unlocks high-res images without watermarks. Need something now? Download a low-res image instantly. Please check the Image Credits Section for photo acknowledgements.

Design Newswire
DefeXtiles Textile Fabrication Press Releases

Discover our press releases for DefeXtiles available in the following languages: English.


Press Kit
DefeXtiles Textile Fabrication Media Articles

We provide articles ready for publication on DefeXtiles, offered in several languages: Dutch, Chinese (Mandarin), French, Portuguese, Italian, Turkish, Arabic (Standard), Japanese, Russian, German, Spanish, English, Korean and Indonesian.


Unique Properties

DefeXtiles is a rapid and low-cost technique to produce realistic high-fidelity textiles on 3D printers. In this work, we demonstrate that under-extrusion defects can be finely controlled to quickly print thin flexible textiles into complex 3D shapes. Our approach enables a myriad of applications including printing full sized garments, deformable tangible interfaces, and ultra-tough shuttlecocks.

Tags

textile, 3d print, lace, advanced manufacturing, fabric

Production Technology

In this paper, we demonstrate that under-extrusion can be leveraged to quickly print thin, flexible, textiles. Specifically, as the extrusion multiplier decreases, there exists an ideal regime where globs form with fine strands connecting them. The periodic gaps that arise from printing this way not only yields textile-like aesthetics and breathability, but also textile-like properties such as flexibility and stretchability even with classically rigid materials such as polylactic acid (PLA).

Design Challenge

To democratize access and ability to make 3D forms with textiles by developing a new technique that allows textiles to be 3D printed into complex 3-dimensional forms using unmodified commodity 3D printer and no new software.

Project Duration

Started in October 2019 in Cambridge Massachusettes, and finished in June 2020. The work will be presented and demoed at the ACM User Interface Software and Technology Symposium 2020.

Operation Flow

This work has introduced a new approach to quickly print thin, flexible textiles composed of common 3D printing ma-terials with an unmodified 3D printer. Our approach com-bines the flexible, thin, and breathable properties of textiles with the affordances of 3D printing: rapid iteration, hands-free fabrication, and computer aided design. Through char-acterization, we demonstrate how our approach enables tun-ing of the mechanical and aesthetic properties through mate-rial and parameter selection. Through a series of applica-tions, we demonstrated the potential applicability of our approach for smart textiles, tangible online shopping, toys, fabric design, and everyday life.

Research

We present a new strategy, called DefeXtiles, to 3D print quasi-woven fabrics that are thin, flexible, and fast to fabricate. Since our approach prints the textiles perpendicular to the print bed, complex geometries can be produced including pleated, curved, and metamaterial structures. With our approach, a standard 3D printer can print decameters of fabric in a single print. The use of multi-material printers allows users to embed circuit traces into the textile via conductive filament.

Inspiration

For thousands of years, the manufacturing of textiles into shaped forms has remained largely the same; fiber becomes a fabric which is then constructed into a 3D object. The high-tech approach, machine knitting, uses expensive machines with a significant learning curve for use. The low-tech approach, classic sewing, requires painstaking processes. As such, there is a need for a fast and accessible approach to manufacture textiles into 3D forms.

Project Overview

DefeXtiles Textile Fabrication has been a Bronze winner in the 3D Printed Forms and Products Design award category in the year 2020 organized by the prestigious A' Design Award & Competition. The Bronze A' Design Award is given to outstanding designs that showcase a high degree of creativity and practicality. It recognizes the dedication and skill of designers who produce work that stands out for its thoughtful development and innovative use of materials and technology. These designs are acknowledged for their professional execution and potential to influence industry standards positively. Winning this award highlights the designer's ability to blend form and function effectively, offering solutions that enhance people's lives and wellbeing.

Image Credits

For design images and photos please credit Jack Forman.

 Award Logo
Bronze Recognition

Jack Forman was recognized with the coveted Bronze A' Design Award in 2021, a testament to excellence of their work DefeXtiles Textile Fabrication.

DesignPRWire
Jack Forman Press Releases

Media members, dive into our press releases on Jack Forman's work, ready for you to use and enhance your journalistic content. Press members can now immediately access 2 press releases.


Revolutionizing Textile Fabrication with DefeXtiles: A Breakthrough in 3D Printing Technology

Jack Forman Unveils DefeXtiles: A Rapid and Low-Cost Technique to Produce Realistic High-Fidelity Textiles on 3D Printers


Newsroom
Jack Forman Newsroom

Discover outstanding design and award-winning initiatives in the Jack Forman Newsroom.

You are currently viewing Media Showcase № 112633. Discover everything Jack Forman has to offer in their newsroom, from award-winning projects to high-res media and valuable resources. You are exploring Press Kit / Media Showcase 112633 for DefeXtiles. More resources can be found in Newsroom 284624.

Explore Now

The Forum Pavilion
The Forum

Pavilion for Figur Inference

Justin Nardone 2024 Partnership Golden
DB Schenker Upcycling Hub Lunchroom
DB Schenker Upcycling Hub

Lunchroom for Carlos Bañon

Carlos Bañon 2023 Academic Golden
Moon Table Light
Moon

Table Light for Naai-Jung Shih

Naai-Jung Shih 2020 Academic Silver
Georgia Fashion Footwear
Georgia

Fashion Footwear for HILOS

Elias Stahl 2021 Startup Silver
Quintessence Spectrum Series Portable Table Lamp
Quintessence Spectrum Series

Portable Table Lamp for Quintessence Lighting

Jeffrey Geiringer 2024 Professional Bronze
Mila 3D Printed Vase
Mila

3D Printed Vase for LuXun Academy of Fine Arts

Bomu Xue 2023 Collaboration Silver
Yinyun Ceramic 3D Print Art Installation
Yinyun

Ceramic 3D Print Art Installation for Fabcraft Design Lab

Fabcraft Design Lab 2020 Agency Bronze
Anycubic Kobra 3D Printer
Anycubic Kobra

3D Printer for Shenzhen Anycubic Technology Co., Ltd.

Anycubic Team 2022 Startup Bronze
Polyhedron Stool
Polyhedron

Stool for PRO-SP

Jin Woong Lee 2021 Academic Silver
Aitable Furniture
Aitable

Furniture for AirLab SUTD

Carlos Bañon 2021 Academic Golden
Unream Voxel Printed Lamp
Unream

Voxel Printed Lamp for MIT HCI Engineering Group

Jiani Zeng 2020 Academic Platinum
Bird's Sake Cup Cup to Refrain from Drinking
Bird's Sake Cup

Cup to Refrain from Drinking for taki products

kenji fujii 2020 Professional Silver
Create Newsroom
Create Your Newsroom

Establishing your own newsroom is a strategic move to effectively communicate your designs to a targeted audience of journalists and media editors. This direct channel enhances your visibility, significantly increasing your chances of being published and featured across a wide range of media platforms, from magazines and newspapers to journals and online media. Take the first step towards amplifying your reach and influence in the design community.

Create Media Account
Create Account to Unlock Exclusive Resources
  • High-resolution images for your stories
  • Ready-to-publish press kits
  • Access to exclusive content

Quick sign-up. Instant access. Elevate your reporting now.

Create Newsroom
Submit Your Design

Submit your design and seize the opportunity to be featured across a global stage. Gain exposure by connecting your work with our extensive network of journalists and leading media outlets. Start your journey to worldwide recognition today.

Launch Your Newsroom

Create a newsroom for direct access to journalists, making your designs easier to publish and feature.

Create Your Newsroom

Featured Now

Design of the Day
DESIGN OF THE DAY
Design Team of the Day
DESIGN TEAM OF THE DAY
Design Legend of the Day
DESIGN LEGEND OF THE DAY
Design Highlight of the Day
HIGHLIGHT OF THE DAY
Design Interview of the Day
DESIGN INTERVIEW OF THE DAY
Designer of the Day
DESIGNER OF THE DAY