3D Printed Furniture
Digital Taihu

3D Printed Furniture for Nanjing University of the Arts and RMIT University

Digital Taihu uses 3D printing technology to activate the application of traditional Chinese culture in the digital age, combining Taihu stone with bi-directional evolutionary structural optimization algorithms to explore design generation methods from natural systems, resulting in digitally sustainable designs with optimized structures.

Yang Pu and Ding Wen Nic Bao 2023 Collaboration Iron Press Kit № 147462

Download Press Kit № 147462

Download Press Kit № 147462 3D Printed Furniture for Nanjing University of the Arts and RMIT University by Yang Pu and Ding Wen Nic Bao to access high-res images, essential texts, translations, and exclusive interviews—all in one.


Available Now for Your Next Story

At innovation|newsroom, we understand the pressures and deadlines journalists face. That’s why we offer exclusive access to our curated press kits and high-resolution images, tailored for accredited journalists. These resources are designed to enrich your stories with depth and visual appeal, spotlighting the world's most innovative designs.


Please Note:

  • Credit the work's creator and/or photographer.
  • Mention innovation|newsroom as your source.
  • Share your published pieces with us; we love to celebrate and promote your work on our platform and social media.

Let’s Collaborate: Your stories matter. innovation|newsroom is here to support you with quality, accessible content. Once you are accredited, reach out for the images and content you need. We will provide the specific images and content directly, along with recommendations on works to feature.


Get Accredited Easily: Quick access to our resources requires media accreditation. Apply for media accreditation to join our network and start exploring a wealth of design stories.


Digital Taihu by Yang Pu and Ding Wen Nic Bao
Digital Taihu by Yang Pu and Ding Wen Nic Bao

Download 1800 Pixels JPEG Image.

The 1800-pixel image is crafted for flexibility in print sizes—crisp and detailed at up to 6 inches with 300 DPI, and maintains its clarity at up to 12 inches when set to 150 DPI. Press pass? Download high-res, watermark-free images. Or, get immediate access to low-res images without accreditation. Consult the Image Credits Section for information on photo credits.

3D Printed Furniture by Yang Pu and Ding Wen Nic Bao
3D Printed Furniture by Yang Pu and Ding Wen Nic Bao

Download 1800 Pixels JPEG Image.

Leverage the high resolution of this 1800-pixel image for detailed, vibrant prints. At 300 DPI, it's ideal for up to 6 inches; at 150 DPI, it scales beautifully to 12 inches. High-res images, watermark-free, are yours with press accreditation; or grab a low-res copy now, no wait required. For attribution details, see the Image Credits Section.

Yang Pu and Ding Wen Nic Bao Digital Taihu
Yang Pu and Ding Wen Nic Bao Digital Taihu

Download 1800 Pixels JPEG Image.

For precise, vibrant prints up to 6 inches, use this 1800-pixel image at 300 DPI. For larger visuals up to 12 inches, 150 DPI ensures the image remains clear and impactful. Download watermark-free, high-res images with your press credentials, or opt for an immediate low-res download. To identify photo contributors, visit the Image Credits Section.

Yang Pu and Ding Wen Nic Bao 3D Printed Furniture
Yang Pu and Ding Wen Nic Bao 3D Printed Furniture

Download 1800 Pixels JPEG Image.

Leverage the high resolution of this 1800-pixel image for detailed, vibrant prints. At 300 DPI, it's ideal for up to 6 inches; at 150 DPI, it scales beautifully to 12 inches. Accredited press members can download high-res images free of watermarks. Alternatively, low-res images are instantly available. Consult the Image Credits Section for information on photo credits.

Yang Pu and Ding Wen Nic Bao Design Team Photo
Yang Pu and Ding Wen Nic Bao Design Team Photo

Download 1800 Pixels JPEG Image.

This 1800-pixel image adapts to your print needs: sharp and detailed at 6 inches with 300 DPI, it transitions smoothly to 12 inches at 150 DPI, preserving visual quality. Download watermark-free, high-res images with your press credentials, or opt for an immediate low-res download. Acknowledgements for photographs are in the Image Credits Section.

Nanjing University of the Arts and RMIT UniversityBrand Logo
Nanjing University of the Arts and RMIT UniversityBrand Logo

Download 1800 Pixels JPEG Image.

Leverage the high resolution of this 1800-pixel image for detailed, vibrant prints. At 300 DPI, it's ideal for up to 6 inches; at 150 DPI, it scales beautifully to 12 inches. Unlock high-res, watermark-free images with press accreditation, or instantly download a low-res version today. Consult the Image Credits Section for information on photo credits.

Design Newswire
Digital Taihu 3D Printed Furniture Press Releases

Press releases tailored for Digital Taihu are available in the languages: English.


Press Kit
Digital Taihu 3D Printed Furniture Media Articles

We provide articles ready for publication on Digital Taihu, offered in several languages: German, Dutch, Hindi, Korean, Japanese, Russian, Chinese (Mandarin), Turkish, Arabic (Standard), English, Spanish, French, Portuguese, Indonesian and Italian.


Unique Properties

The work uses 3D printing to activate traditional Chinese culture to realize the synergistic design of structural properties generated by the 'Taihu Stone' and bi-directional evolutionary structural optimization algorithms, focusing on the complexity of virtual birth forms into the rationality of physical forms. This digital design practice learns from nature and derives its design biomorphic approach from natural systems to achieve the sustainable goal of living in symbiosis with nature.

Tags

Bi-directional evolutionary structural optimization, 3D Printing, Conceptual Design, Furniture Design

Production Technology

A bi-directional evolutionary structural optimization method was used to optimize the furniture structure and to obtain a simulated natural form of Taihu stone. The furniture model is constructed from liquid photosensitive resin material by integrated 3D printing. The actual construction was carried out using metal 3D printing.

Design Challenge

The most difficult part of the project development process is the topology optimization phase, including the application of relevant mechanics methods and the testing of data iterations. Secondly, it was also a challenge to verify the feasibility of the structural materials, which needed to be considered in terms of production difficulties and the extent to which people would use them.

Project Duration

The project started in July 2022 and ended in September 2022. Project duration: 2 months. Location: Wuhan City, Hubei Province, China.

Operation Flow

Firstly, the furniture is designed using a bi-directional evolutionary structural optimization algorithm and the prototype is iterated according to the corresponding optimization results. Secondly, the furniture is constructed by 3D printing. The topologically optimized furniture not only has reasonable structural properties, reduces the amount of material used, and shortens the construction production cycle, but also results in a better quality customized lightweight designs.

Research

Research objectives: 1. The digital expression of traditional Chinese cultures. 2. furniture structures optimization and 3D printing technology combined to achieve sustainability goals. Research methods: 1. Structural data collection and analysis. 2. Algorithmic data iteration to generate forms. Research findings: 1. 3D printing technology allows for rapid lightweight design, moving away from traditional production models. 2. Furniture structures and materials are cutting-edge. Research Impact: Provides the possibility of diverse design for the future digital design industry.

Inspiration

In the long history of furniture design, traditional culture has given furniture shapes a richer morphological language, and 3D printing as a new design culture can bring more surprises to furniture design. From a design perspective, we hope that the combination of the natural form of the traditional Chinese stone "Taihu Stone" and digital design will result in a more vivid shape through 3D printing, activating a new way of communicating Chinese traditional culture in the digital age.

Image Credits

Yang Pu and Ding Wen‘Nic’Bao,2022.

Project Overview

Digital Taihu 3D Printed Furniture has been a Iron winner in the 3D Printed Forms and Products Design award category in the year 2022 organized by the prestigious A' Design Award & Competition. The Iron A' Design Award is awarded to good designs that meet the rigorous professional and industrial standards set by the A' Design Awards. This recognition is reserved for works that demonstrate a solid understanding of design principles and show creativity within their execution. Recipients of the Iron A' Design Award are acknowledged for their practical innovations and contributions to their respective fields, providing solutions that improve quality of life and foster positive change. These designs are a testament to the skill and dedication of their creators, showcasing their ability to address real-world challenges through thoughtful design.

Yang Pu and Ding Wen Nic Bao Design Team Photo Award Logo
Iron Recognition

Yang Pu and Ding Wen Nic Bao was recognized with the coveted Iron A' Design Award in 2023, a testament to excellence of their work Digital Taihu 3D Printed Furniture.

DesignPRWire
Yang Pu and Ding Wen Nic Bao Press Releases

Media members, dive into our press releases on Yang Pu and Ding Wen Nic Bao's work, ready for you to use and enhance your journalistic content. 1 press releases are now available for immediate access by journalists.


Digital Taihu: 3D Printed Furniture Combining Tradition and Innovation

Yang Pu and Ding Wen Nic Bao Introduce Digital Taihu


Yang Pu and Ding Wen Nic Bao Design Team Photo
Yang Pu and Ding Wen Nic Bao Newsroom

Yang Pu and Ding Wen Nic Bao Newsroom is your gateway to exploring acclaimed design and award-winning works.

You are currently viewing Media Showcase № 147462. Explore Yang Pu and Ding Wen Nic Bao's newsroom for a complete collection of their award-winning work, including high-resolution images, interviews, and much more. Currently viewing: Press Kit / Media Showcase 147462 for Digital Taihu. For extended content, visit Newsroom 340839.

Explore Now

DefeXtiles Textile Fabrication
DefeXtiles

Textile Fabrication for Tangible Media Group, MIT Media Lab

Jack Forman 2021 Academic Bronze
Unream Voxel Printed Lamp
Unream

Voxel Printed Lamp for MIT HCI Engineering Group

Jiani Zeng 2020 Academic Platinum
The Conequeror Lamp
The Conequeror

Lamp for Duettones Design Lab

Kezia Age 2024 Professional Iron
The Flett Roof Flashing
The Flett

Roof Flashing for Scott Flett Architecture Workshop.

Scott Flett 2023 Professional Iron
Bird's Sake Cup Cup to Refrain from Drinking
Bird's Sake Cup

Cup to Refrain from Drinking for taki products

kenji fujii 2020 Professional Silver
Plan Ta Modular Vase
Plan Ta

Modular Vase for DEZIGN for X

Xavier Zhagui 2024 Professional Iron
DB Schenker Upcycling Hub Lunchroom
DB Schenker Upcycling Hub

Lunchroom for Carlos Bañon

Carlos Bañon 2023 Academic Golden
Mila 3D Printed Vase
Mila

3D Printed Vase for LuXun Academy of Fine Arts

Bomu Xue 2023 Collaboration Silver
Last Stand Office Gadget
Last Stand

Office Gadget for Ospina Umbreit Design

Juan Ospina 2023 Professional Iron
The Forum Pavilion
The Forum

Pavilion for Figur Inference

Justin Nardone 2024 Partnership Golden
Anycubic Kobra 3D Printer
Anycubic Kobra

3D Printer for Shenzhen Anycubic Technology Co., Ltd.

Anycubic Team 2022 Startup Bronze
Relax Stand Smartphone Stand
Relax Stand

Smartphone Stand for taki products

kenji fujii 2020 Professional Iron
Create Newsroom
Create Your Newsroom

Establishing your own newsroom is a strategic move to effectively communicate your designs to a targeted audience of journalists and media editors. This direct channel enhances your visibility, significantly increasing your chances of being published and featured across a wide range of media platforms, from magazines and newspapers to journals and online media. Take the first step towards amplifying your reach and influence in the design community.

Create Media Account
Create Account to Unlock Exclusive Resources
  • High-resolution images for your stories
  • Ready-to-publish press kits
  • Access to exclusive content

Quick sign-up. Instant access. Elevate your reporting now.

Create Newsroom
Submit Your Design

Submit your design and seize the opportunity to be featured across a global stage. Gain exposure by connecting your work with our extensive network of journalists and leading media outlets. Start your journey to worldwide recognition today.

Unlock Exclusive Journalistic Resources

Join our community of leading journalists and gain immediate access to premium content, in-depth design insights, and exclusive interviews.

Create Your Journalist Account

Featured Now

Design of the Day
DESIGN OF THE DAY
Design Team of the Day
DESIGN TEAM OF THE DAY
Design Legend of the Day
DESIGN LEGEND OF THE DAY
Design Highlight of the Day
HIGHLIGHT OF THE DAY
Design Interview of the Day
DESIGN INTERVIEW OF THE DAY
Designer of the Day
DESIGNER OF THE DAY